

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2018
Lab 09 – 2D Lists

Assignment: Lab 09 – 2D Lists
Due Date: During discussion, October 29th through Noember 1st
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will put into practice the new concepts you learned about lists:
lists of lists (two-dimensional lists), mutability, and passing lists to functions.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Traversing Lists

Remember from previous assignments that we can access the items in a list
sequentially using a while loop. This process is called traversing and is

often used when we want to perform the same action with each element of a
list. We can use an index as our loop variable, and increment its value after
each loop. In the body of the while loop we can include any code that we

want to run based on the value of each element of the list.

In this example from Pre-Lab 5, the given code would traverse the names list

below, printing out that each person is awesome:

this variable can be called anything

it starts at zero because that's the first index

index = 0

while index < len(names):

 print(names[index], "is awesome!")

 index += 1

Part 1B (Review) – Visualizing 2D Lists

In Python, two-dimensional lists (or 2D lists, as we’ll call them from now on) are
simply lists of lists. We’ve worked with lists of integers, lists of strings, and
other variable types – a list of lists isn’t much different.

If we visualize the 2D list, we can think of each “sublist” as a row of a grid and
each element of a “sublist” as a column in that row.

We can initialize a 2D list as follows:

my2DList = [[13,18,21], [30,40,50], [77,88,99]]

We can draw the list as a table or matrix as shown below. (Note that the gray
boxes represent the indices of the list, and are not part of the list in any way.)

 0 1 2

0 13 18 21

1 30 40 50

2 77 88 99

CMSC 201 – Computer Science I for Majors Page 3

Part 1C (Review) – Accessing 2D Lists

We access 2D lists in a way very similar to the way that we access lists in
general. The general format to access an element of a 2D List is:

listName[row][column]

For example, if we wanted to access the value 21 in the previous example, we
would use my2DList[0][2].

Notice that the row index always comes before the column index. If we think
about how we accessed the value 21 above:

(1) We look at the element of the “outside” list that is at index 0

• Because each element is a list itself, my2DList[0] will be the

first row (or “sublist”) of the 2D list
(2) We can then index into the selected “inside” list and access its 3rd

element by using the index 2: my2Dlist[0][2]

• This gives us the third element of the first list, the value 21

We already know that we can use len() to determine the number of items in

a one-dimensional list. However, this means that calling len(my2Dlist)

will return the number of rows in my2DList, not the total number of items.

This is because the elements of my2DList are the “sublists” of the “outside”

list, not each individual element.

If we want the number of items in an individual row, we would use
len(my2Dlist[rowNum]) instead, because my2DList[rowNum] is an

“inside” list (or “sublist”) and will therefore be a one-dimensional list of
individual elements.

CMSC 201 – Computer Science I for Majors Page 4

Part 1D (Review) – Mutating 2D Lists

We can change the contents of a list in two ways:
(1) Assigning a new value to a current element of a list.
(2) Appending to or removing from a list.

To update the contents of a list, we simply assign a new value to a specific
index. For example, we can run the following line of code on the list below:

my2DList[0][2] = 25

 0 1 2

0 13 18 21

1 30 40 50

2 77 88 99

After this code is run the list looks like this (the change is highlighted for you):

 0 1 2

0 13 18 25

1 30 40 50

2 77 88 99

We can also use append() and remove(), similar to how we used them for

one-dimensional lists. We can call these functions on the entire list to allow us
to add or remove a row. We can also call them on the list at a specific index (a
specific row) to add or remove from that row of the list. It is important to note
that the rows of a 2D list do not need to be the same length.

For example, the following is a valid definition of a 2D list:

myUnbalancedList = [["A", 1], [2.3, 5.6, "hello"], \

 ["pizza"]]

 0 1 2

0 "A" 1

1 2.3 5.6 "hello"

2 "pizza"

Also notice that like with one-dimensional lists, all elements of the list do not
need to be of the same type. This makes sense if we remember that we are
dealing with a list of lists.

CMSC 201 – Computer Science I for Majors Page 5

Here are some examples of using append() and remove(), on my2DList.

We last left our list like this:

 0 1 2

0 13 18 25

1 30 40 50

2 77 88 99

my2DList.append([101, 121])

This line of code will add a new row to the end of our list:

 0 1 2

0 13 18 25

1 30 40 50

2 77 88 99

3 101 121

my2DList[1].remove(40)

This line of code will remove the value 40 from the second row (index 1). This

causes the value 50 to shift over, and shortens the second row’s length.

 0 1 2

0 13 18 25

1 30 50

2 77 88 99

3 101 121

Note that my2DList.remove(50) would not work on the list. There is no

value 50 in the main list – it only exists within the second row.

In the same way, the membership “in” will only look one “level” deep. If we

asked Python: 13 in my2DList it would return False. We would need to

ask 13 in my2DList[0] for the result to be True.

CMSC 201 – Computer Science I for Majors Page 6

Part 2: Exercise

In this lab, you’ll be downloading a file and completing it by writing the code
necessary to complete two functions that make use of a 2D list.

The program you’ll be finishing uses a two-dimensional list to store a list of
expenditures, with each interior list containing the spending for a specific
category. Once complete, the program will print out the categories and
expenditures, the total spent in each category, and the overall total
expenditures.

Tasks

Starting:
 Copy the given_spend.py file from Prof. Neary’s pub directory

 It should be renamed to spending.py

 Complete the file header comment at the top
Functions:
 Write the while loop to complete printSpending()

 Write the while loop for tallySpending()

 Write the function call for tallySpending()

 Uncomment the print() function call in main()

General:
 Run and test your code as needed
 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 7

Part 3A: Downloading the File

First, create the lab09 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well.

Next, copy a file into your lab09 folder using the cp command.

cp /afs/umbc.edu/users/m/n/mneary1/pub/cs201/given_spend.py spending.py

This will copy the file given_spend.py from Prof. Neary’s public folder into

your current folder, and will change the file’s name to spend.py instead.

The first thing you should do in your file is complete the file header comment,
filling in your name, section number, email, and the date.

CMSC 201 – Computer Science I for Majors Page 8

Part 3B: Finishing the Functions

At this point, if you try to run the file, it will only print out the category titles for
the expenditures, and nothing else. That is because the file is only partially
completed for you.

You will need to update the file to complete the two function definitions, and
one function call. If you open the file, you should see comments boxed in by #

signs – these are where you need to write new code. Read the function
header comments to see the details about the two functions.

You’ll need to think carefully about the two-dimensional spending list and

how its contents are organized (and how you can access them). It might be
helpful to draw a visual representation, and to label the indexes.

For printSpending() and tallySpending(), you’ll need to write a

while loop. Make sure to pay attention to what the function’s already

written code does, as well as things like variable names.

Once both functions are complete, you need to call tallySpending() down

in main(), as well as uncommenting the print() statement below it. You

shouldn’t need to write any other code.

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 9

Here is some sample output of the completed program.
There is no user input, and yours should be identical once it’s complete.

(The printed list of expenditures for eating out is long enough to wrap around in
this document, but is should not wrap around when you run it in the terminal.)

linux2[4]% python3 spending.py

Spending:

EAT OUT : 15.86 42.79 13.8 9.16 9.16

5.42 49.3

VEHICLE : 25.68 89 7.99 23.11

GROCERIES : 54.33 30.27 5.88 40.71

UTILITIES : 165.31 17.32

PERSONAL : 25 14.91 40.52

ENTERTAIN : 15.66 13 5.99 33.04

PET CARE : 100 13.91 48.98 17.22 42.45

RENTING : 1300

In category EAT OUT $145.49 was spent

In category VEHICLE $145.78 was spent

In category GROCERIES $131.19 was spent

In category UTILITIES $182.63 was spent

In category PERSONAL $80.43 was spent

In category ENTERTAIN $67.69 was spent

In category PET CARE $222.56 was spent

In category RENTING $1300 was spent

You spent a total of $2275.77 this month

CMSC 201 – Computer Science I for Majors Page 10

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Starting:
 Copy the given_spend.py file from Prof. Neary’s pub directory

 It should be renamed to spending.py

 Complete the file header comment at the top
Functions:
 Write the while loop to complete printSpending()

 Write the while loop for tallySpending()

 Write the function call for tallySpending()

 Uncomment the print() function call in main()

General:
 Run and test your code as needed
 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

	Part 1A: Review – Traversing Lists
	Part 1B (Review) – Visualizing 2D Lists
	Part 1C (Review) – Accessing 2D Lists
	Part 1D (Review) – Mutating 2D Lists
	Part 2: Exercise
	Tasks

	Part 3A: Downloading the File
	Part 3B: Finishing the Functions
	Part 4: Completing Your Lab

